

MINESWEEPERS

TOWARDS A LANDMINE-FREE WORLD

WWW.LANDMINEFREE.ORG

Unmanned Aerial Vehicles

Eng. Amr Nagaty

Aviya Aerospace Systems, Canada

http://www.aviyatech.com/

Unmanned Aerial Vehicles

- Introduction
- Modeling
- Control
- System Architecture
- Practical Considerations
- Resources

Introduction (1/2)

UAV Types

- Helicopter
- Fixed wing
- Hybrid

Distinctive Mission Qualities

- Flight speed
- Coverage
- Endurance
- VTOL/Hover
- Payload

UAV Applications

- Landmine detection
- Search and rescue
- Border patrol
- Surveillance
- Agriculture

Introduction (2/2)

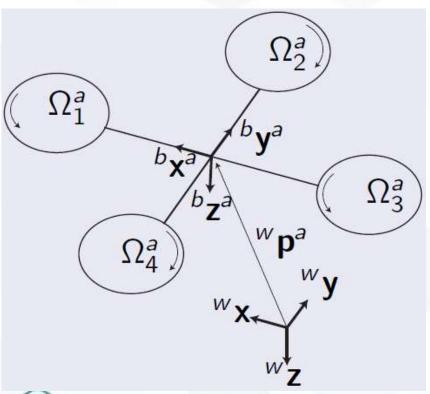
Multi-rotor Helicopter

- Mechanically simple
- Favorable handling
- Symmetrical design

Conventional Helicopter

Mechanical complexity (swash plate)

G2 Raptor



X650

Quadrotor Modeling (1/3)

Quadrotor Architecture

Forces & Moments

F\M	Ω_1^a	Ω_2^a	Ω_3^a	Ω_4^a
Roll(M)		-		+
Pitch(M)	+		-	
Yaw(M)	+	-	+	-
Thrust(F)	+	+	+	+

$$F_i = k_F (\Omega_i^a)^2$$
$$M_i = k_M (\Omega_i^a)^2$$

$$M_i = k_M (\Omega_i^a)^2$$

Quadrotor Modeling (2/3)

Rotational dynamics are computed using Euler equation

$$I\dot{\omega} + \omega \times I\omega = M$$

Translational dynamics are computed using Newton equation

$$m\ddot{p} = RF + [0 \quad 0 \quad mg]$$

- Rotational matrix (R) is function in attitude and heading
- First order motor model

$$\frac{\Omega(s)}{V(s)} = K \frac{1}{\tau s + 1}$$

Quadrotor Modeling (3/3)

- System identification:
 - Motor/propeller model can identified experimentally
 - Aerodynamic coefficients can be identified experimentally
 - Some parameters can be directly measured
 - Inertia matrix can be approximated using simple shapes
- Control Challenges:
 - Nonlinear dynamics
 - Coupling
 - Under-actuation
- Remarks:
 - Dynamics can be linearized about operating point (hover)

Quadrotor Control (1/8)

Auto-pilot Levels	Pilot/GCS Commands	Features/ Challenges
Manual	Roll / Pitch / Yaw moments Thrust	No controller tuning Minimal sensory suite Almost impossible to pilot
Angular Velocity Stabilization	Roll / Pitch / Yaw velocity Thrust	Minimal controller tuning Gyroscopes needed Hard to pilot
Attitude & Heading Stabilization	Attitude (Roll & Pitch) Heading (Yaw) Thrust	Controller tuning IMU needed Good piloting skills to control position

Quadrotor Control (2/8)

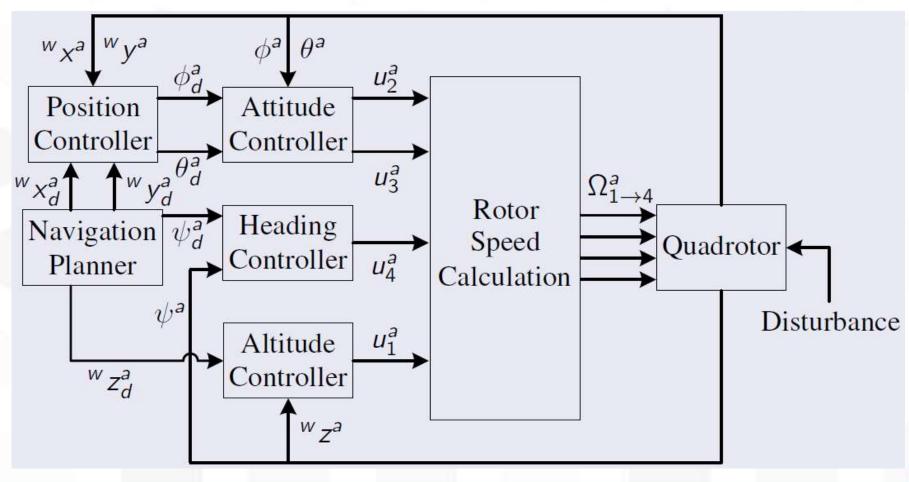
Auto-pilot Levels	Pilot/GCS Commands	Features/ Challenges
Velocity Stabilization	Heading Linear velocities	Controller tuning GPS needed Basic piloting skills to control position
Waypoint Following	Position Altitude Heading	Controller tuning GPS + Barometer needed Basic piloting skills for takeoff and landing
Automatic Takeoff	Heading Position Altitude Takeoff command	Switching control GPS + Barometer + sonar needed Basic piloting skills for landing

Quadrotor Control (3/8)

Auto-pilot Levels	Pilot/GCS Commands	Features/ Challenges
Automatic Landing	Heading Position Altitude Landing command	Challenging Switching control GPS + Barometer + sonar + camera needed No piloting skills

For higher level autonomy at least waypoint following controller:

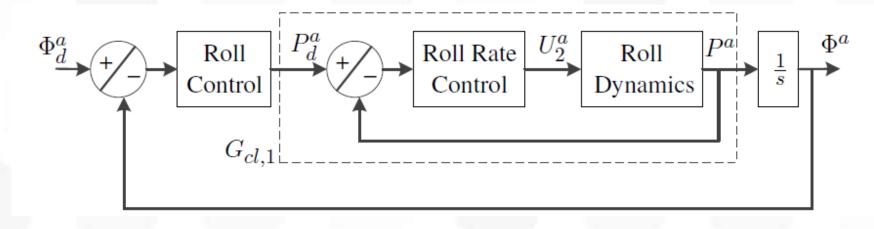
- Path planning
- Mapping
- Return home, etc.


Quadrotor Control (4/8)

- Linear control
- Cascaded control architecture
- Control inputs are moments and delta thrust (converted to rotor speeds)
- Inner-loop controller outputs are desired roll, pitch and yaw angles
- Outer-loop controller outputs are desired position and altitude
- Remarks:
 - Mercator projection can be used to convert lat/lon/alt from GPS to x/y/z positions relative to a reference lat/lon/alt point
 - Inertial navigation systems (INS) should be implemented from improved positioning accuracy

Quadrotor Control (5/8)

Quadrotor Control (6/8)


- Differential Rotor speeds are calculated from control inputs
- Hovering rotor speeds should be added to differential speeds

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}^a = \begin{bmatrix} k_F & k_F & k_F & k_F \\ 0 & -k_F & 0 & k_F \\ k_F & 0 & -k_F & 0 \\ k_M & -k_M & k_M & -k_M \end{bmatrix} \begin{bmatrix} \Omega_1^2 \\ \Omega_2^2 \\ \Omega_2^2 \\ \Omega_3^2 \\ \Omega_4^2 \end{bmatrix}^a$$

Quadrotor Control (7/8)

$$p_d^a \triangleq k_{p,2}^a \left(\phi_d^a - \phi^a\right) + k_{i,2}^a \int\limits_0^t \left(\phi_d^a - \phi^a\right) dt + k_{d,2}^a rac{d \left(\phi_d^a - \phi^a\right)}{dt}$$

$$u_2^a = k_{p,1}^a \left(p_d^a - p^a
ight) + k_{i,1}^a \int\limits_0^t \left(p_d^a - p^a
ight) dt$$

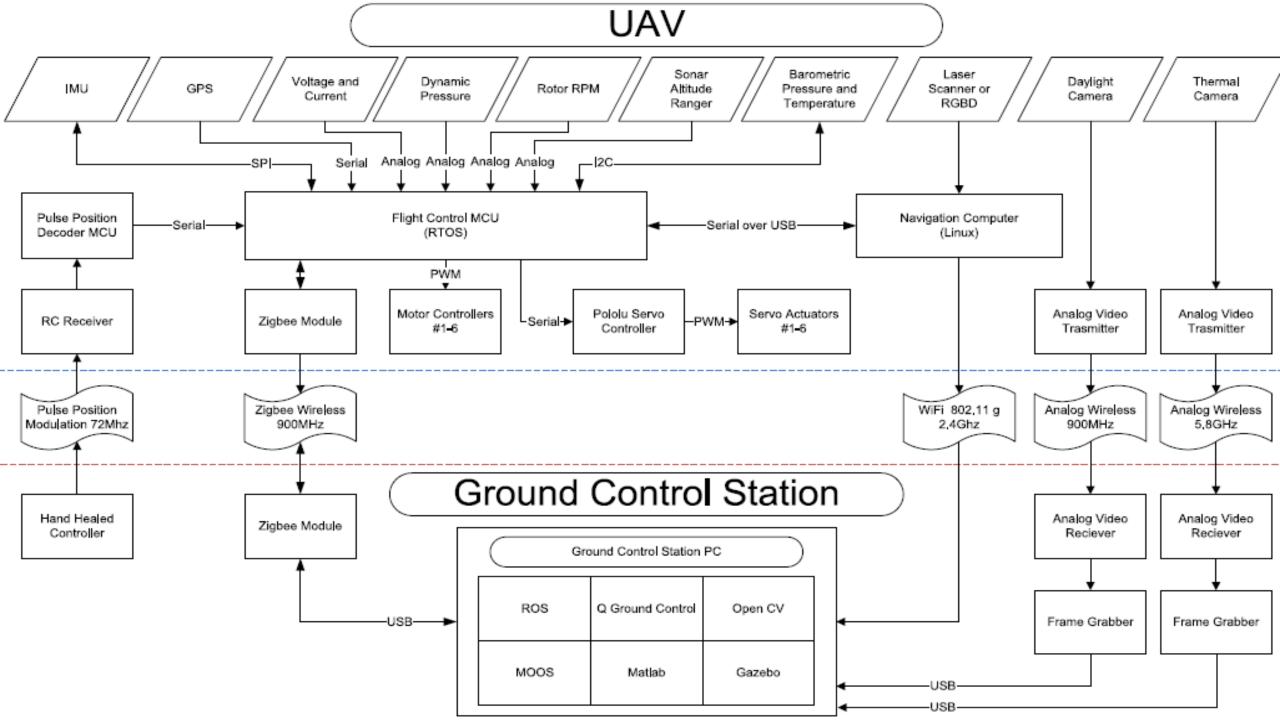
Quadrotor Control (8/8)

Remarks:

- Proper modeling and system identification reduces controller development time
- High inner-loop controller bandwidth
- Inner-loop controller is tuned first followed by the outer-loop controller
- Controller output saturation
- Piloting skills needed for controller tuning
- Actuator saturation and integrator wind-up
- Controller sensitivity to mass/inertia variations
- EKF for state estimation

System Architecture (1/3)

- Main system components:
 - UAV
 - Propulsion (Brushless DC motors, ESC, propeller)
 - Lithium polymer batteries
 - Onboard Sensors: IMU, GPS, barometer, etc.
 - Onboard micro-controller / single board computer
 - Communication modules
 - Ground control station
 - Safety pilot
 - Kill switch



System Architecture (2/3)

- Ground control station:
 - Monitoring:
 - Display telemetry data
 - Health
 - Visualization
 - Platform orientation
 - Position and heading on map
 - Functional
 - Waypoint transmission
 - Altitude and heading transmission
 - Mission specific

Practical Considerations

DIY

- Lightweight components
- Propulsion sizing for payload
- Battery sizing for endurance
- Sensor and payload mounting
- Noise/Vibration suppression
- Controller implementation
- GCS interfacing

Ready Kit

- Autopilot capability
- Controller tuning
- Open source
- GCS interfacing
- Payload
- Endurance
- Cost/Availability

Resources (1/2)

- Thrust calculator:
 - http://www.gobrushless.com/testing/thrust_calculator.php
 - http://www.flybrushless.com/tools/thrustCalc
 - http://www.electricrcaircraftguy.com/2013/09/propeller-static-dynamic-thrust-equation.html
- Open source autopilot:
 - http://ardupilot.org/ardupilot/index.html
 - http://www.openpilot.org/
 - https://wiki.paparazziuav.org/wiki/Main-Page
 - http://aeroquad.com/content.php?s=07985f0ccb32fd617e2842cff718e976

Resources (2/2)

- Open source GCS:
 - http://www.qgroundcontrol.org/
- DIY:
 - http://www.robotshop.com/blog/en/robots/gorobotics/tutorials/how-to-make-a-drone-uav

