Competition Rules [Metallic Surface/Buried Object Detection ONLY]

Minesweepers-Junior is an international outdoor robotic competition on humanitarian demining for primary and secondary school students. Each participating team (Max. 10 members) will construct a teleoperated or an autonomous robot that should be able to search for underground and aboveground anti-personnel mines. The robot has to able to navigate through rough environment that mimics a real minefield.

1. Minefield

The competition environment will be an open wood area with a size of 20 x 20 m, delimited by 4 GPS coordinates. The competition area will be marked by plastic tape for visualization purposes, there will also be a virtual fence to stop the robots from going outside the competition area. There will be no mines in a stripe of 0.5 m of terrain along the borders of the competition area. Most of the arena will be covered by low grass with a few trees, some steep inclines, ditches and culverts. Some photos of the minefield are shown below.

2.  The Mines

Two different kinds of artificial mines are used in this competition:

Buried Mines: These mines are made from metallic cubes, with approximate dimensions of 10x10x10 (LxWxD). These mines are completely buried underground with maximum depth 10 cm. These buried metallic cubes mimic real anti-personnel (AP) blast mines. Real AP blast mines are deliberately designed to be small (typically 6-14 cm in diameter): this makes them cheaper and easier to store, carry and deploy. AP blast mines rely on the effect of explosive blast to damage the victim, and are designed to detonate when the victim steps on them. These mines are often buried in order to camouflage their presence.

Surface Mines: These mines are made from metallic cubes, with approximate dimensions of 10x10x10 (LxWxD) and labeled in black color.  These mines are visible and are located on the surface of the competition area. Any contact with them will be penalized. These black metallic cubes are used to simulate aboveground mines and unexploded ordnance (UXOs). Unexploded Ordnance is a piece of explosive ordnance or ammunition that has failed to function as intended. Although they have failed to function as intended, UXO can sometimes require only the slightest disturbance to detonate. UXOs vary greatly in size from hand grenades the size of an apple to large aircraft bombs.

Some landmines will be organized in a pattern for easier removal and accountability and others will be scattered randomly. Locations of each landmine will be known for the jury committee.

3.  The Robots

Each team must use a teleoperated or an autonomous robot per game. The robot has to be made by team members. Teleoperated robot must be operated remotely from a base station located outside the minefield. Wireless controller based on ZigBee for example would be recommended to communicate the base station with the robot due to the large size of the field. In case of autonomous robots, all the actions of the robot must be completely autonomous without human intervention. Autonomous robot will be rewarded a 40% bonus over teleoperated robots. Careful attention must be paid to the robot locomotion systems as the roughness of the terrain is very high. Both unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) are allowed as illustrated in the figure below.

Unmanned ground vehicles can be wheeled, legged or hybrid. Wheeled robots include but are not limited to differential drive, tricycle drive, Ackerman steering, synchro drive, omnidirectional drive, Multi-Degree-of-Freedom (MDOF) vehicles, MDOF vehicle with compliant linkage or tracked vehicles. Legged robot can be uniped, biped, tripod, pentapod, quadruped or hexapod robot. Any types of hybrid locomotion can also be used. Examples of hybrid locomotion include a vehicle equipped with tracks for fast locomotion, and legs for more difficult terrain or flippers with self-cleaning tracks or legged vehicles with driving wheels attached to the end of each leg. UAV can be an alternative for the locomotion systems. As shown in above figure, UAVs can be classified into fixed wing, conventional helicopters and multi-rotor helicopters. Fix wind UAVs are naturally stable platforms capable of long flight times and extreme range. However, they are difficult to coordinate with slower ground systems. Conventional helicopters are common collective pitch model helicopters known for their excellent maneuverability and scalability. However they suffer from high level of complexity. Quad-rotors have the ability to hover and there are naturally stable and durable. However, they have limited pay-load. Ball-bots or UAVs that can land on a roving platform are also allowed.

Robot can also be an unmanned aerial vehicle or a quad-rotor. Robot can be actuated using electric, pneumatic or hydraulic actuation system, Diesel/Petrol engine or using solar energy.

4.  Sensors

Each team can select their own set of sensors for localization of mines. Although teams can install cameras on robot or install them on the sides of the field, no camera or sensors is allowed to hangover the competition area.

5.  Mine Detection

When a robot detects a mine, it has to autonomously report this event using a light blinking signal and a warning siren for at least 2 seconds. Teams have to correctly position the alarm device on their robot.

6.  Procedure

Each robot starts the game from one of the corners of the competition arena. Team members will bring the teleoperated or the autonomous robot to this location. Then robot has to search the field to find buried mines or the mines scattered on surface. When the robot detects any kinds of mine it should produce a light signal and siren. All the detected mines will be removed from the field before a new team enters the arena.

Robot has to able to navigate through rough environment of the minefield and avoid obstacles. Robots must avoid surface mines else the team will be penalized. During competitions only one of team members can attend the field. He/she can request a “Reset Time” which means he/she can stop the game and take out robot for repair or adjustment. The time spends for this repair will be included within the competition time and there would be a penalty for each resent time. The competition time allowed for each team is 20 minutes including the reset time. Jury committee will calculate the team's score and prepare the field for the next team during another 10 minutes.

The competition will end with one of the following conditions:

  • The dedicated time finishes,

  • Team dismiss the game,

  • Any cheating happens,

  • Robot touches a surface mine.

7.  Scoring

 

Action

Count

Score/Unit

Subtotal

Arena Score: The following score will be based on the performance of the robot in the competition arena and will be observed and calculated by the in-field judge.

Detected Surface Mines

 

5

 

Detected  Underground Mines

 

10

 

Completely Scan the field  and 80% of Mines Detected (Systematic Motion)

Yes

No

30

0

 

Wrong Detection of a Mine

 

-5

 

Passover Buried Mine without Detection

 

-10

 

Touching Surface Mine

 

-5

 

No light signal and/or a siren

Yes

No

-3

0

 

Reset Time (-2/1min)

 

-2

 

Total Score:

 

      Autonomous Robot

☑   YES (Multiply by 1.2)

◻   NO

      Running Using ROS

☑   YES (Multiply by 1.2)

◻   NO

    Multi Robot System

☑   YES (Multiply by 1.2)

◻   NO

Final Score: